
Code size minimization and retargetable assembly
for custom EPIC and VLIW instruction formats

Shail Aditya

Hewlett-Packard Laboratories, Palo Alto, California

and

Scott A. Mahlke

Hewlett-Packard Laboratories, Palo Alto, California

and

B. Ramakrishna Rau

Hewlett-Packard Laboratories, Palo Alto, California

PICO is a fully automated system for designing the architecture and the micro-architecture of
VLIW and EPIC processors. A serious concern with this class of processors, due to their very
long instructions, is their code size. One focus of this paper is to describe a series of code size
minimization techniques used within PICO, some of which are applied during the automatic
design of the instruction format, while others are applied during program assembly. The design
of a retargetable assembler to support these techniques also poses certain novel challenges which
constitute the second focus of this paper. Contrary to widely held perceptions, we demonstrate
that it is entirely possible to design VLIW and EPIC processors, which are capable of issuing
large numbers of operations per cycle, but whose code size is only moderately larger than that for
a sequential CISC processor.

Categories and Subject Descriptors: B.1.2 [Control Structures and Microprogramming]:
Control Structure Performance Analysis and Design Aids|Automatic synthesis; PICO-VLIW;
C.1.1 [Processor Architectures]: Single Data Stream Architectures|RISC/CISC, VLIW ar-
chitectures; D.3.4 [Programming Languages]: Processors|Code generation; Retargetable com-
pilers

General Terms: Design, Experimentation, Measurement

Additional Key Words and Phrases: EPIC, VLIW, instruction format design, code size minimiza-
tion, noop compression, design automation, custom templates, retargetable assembly

1. INTRODUCTION

VLIW (Very Long Instruction Word) processors are beginning to establish them-
selves as the processor of choice in high performance embedded computer systems,
especially in situations where an e�cient compiler for a high level language is avail-
able. Although a fair amount of work has been done on providing the capability

Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for pro�t or direct
commercial advantage and that copies show this notice on the �rst page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, to redistribute to lists, or to use any component of this work in other works,
requires prior speci�c permission and/or a fee.
c2000 by the Association for Computing Machinery, Inc.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000

� 2

to automatically design the architecture of sequential, RISC- or CISC-like ASIPs{
primarily a matter of designing the opcode repertoire{there has been relatively little
work in the area of automatically synthesizing the architecture and microarchitec-
ture of VLIW processors or, for that matter, of processors of any kind that provide
signi�cant levels of instruction-level parallelism (ILP).
The goal of our PICO (Program-In-Chip-Out) project is to fully automate this

process, so that optimized ASIP and ASIC designs can be generated automatically
from a given application program written in some high level language such as C.
One aspect of PICO is a fully automated system for designing the architecture
and micro-architecture of application-speci�c VLIW [Aditya et al. 1999] and their
generalization, EPIC (Explicitly Parallel Instruction Computing [Schlansker and
Rau 2000]) processors1. We refer to this process as architecture synthesis to distin-
guish it from behavioral or logic synthesis which are at a lower level, and we refer
to this design sub-system as PICO-VLIW. Given an abstract description of the
target architecture, the PICO-VLIW system automatically produces an RT-level,
structural description of the target processor in VHDL along with a non-structural
machine-description database (mdes) which includes an automatically gen-
erated instruction format for the target processor. The mdes is used to retarget
various software tools to the target architecture automatically.
The general perception of VLIW processors is that they cause great increases in

code size. And, in fact, this can be the case with simplistically designed VLIW
architectures. Consequently, a major emphasis of PICO-VLIW has been on con-
taining the resulting code size for the VLIW architectures that it designs. Since
code size reductions are often at the expense of hardware complexity or perfor-
mance penalties, this is a non-trivial task and constitutes one focus of this paper.
There are two classes of techniques used for this purpose: those that are applied at
the time that PICO-VLIW architects the processor, and those that are performed
by the mdes-driven assembler during assembly. The design of a mdes-driven as-
sembler in this context poses certain novel challenges which is the second focus of
this paper.
We discuss the measures taken by PICO-VLIW to minimize code size in Section 2.

In Section 3, we discuss the novel aspects of our mdes-driven assembler and, in
Section 4, we provide experimental evidence of the e�ectiveness of our techniques for
trading o� code size with hardware cost and run-time performance of the processor.
Section 5 discusses related work and Section 6 presents conclusions.

2. MINIMIZATION OF CODE SIZE

Explicit instruction-level parallelism is a de�ning property of VLIW; each VLIW
instruction is able to specify a set of operations that are to be issued simulta-
neously. This property is termed MultiOp [Rau 1988]. A MultiOp instruction
contains multiple operation slots, each of which speci�es one of the operations
that are to be issued simultaneously. An operation is the smallest unit of execu-
tion in a VLIW processor and is the equivalent of a conventional RISC or CISC
instruction in that it, typically, speci�es an opcode, one or two source operands,
and a destination operand.

1For the sake of brevity, in the rest of this paper we use the term VLIW to include EPIC as well.

� 3

We de�ne the canonical instruction format to be the MultiOp instruction
format that has an operation slot per functional unit. The operation slots need not
be of uniform width and each one can use exactly as many bits as it needs. This
conserves code space. Furthermore, the correspondence between an operation slot
and a functional unit can be implicitly encoded by the position of the operation
slot within the instruction{a further saving in code space over having to specify
this mapping explicitly, somewhere in the instruction.
However, when the parallelism in either the hardware or the program is unable

to sustain the level of parallelism permitted by the canonical format, some of these
operation slots will contain noops, leading to wasted code space. Worse yet, the
schedule created by the compiler might be such that there is no operation whatso-
ever scheduled to issue on certain cycles. In a VLIW processor, with no hardware
interlocks, this situation requires the insertion of one or more MultiOp instructions
containing nothing but noops. These completely empty instructions can be elim-
inated by the inclusion of a multi-noop �eld in the MultiOp instruction format
which speci�es the number of noop instructions that are to be issued, implicitly,
after the current instruction [Beck et al. 1993].
A more challenging problem is to get rid of code wastage caused by explicit

noop operations in an instruction that is not completely empty. A variety of noop
compression schemes can be devised to address this problem [Schlansker and Rau
2000]. The one that we employ involves the use of multiple instruction formats or
templates, each of which provide operation slots for just a subset of the functional
units. The rest of the functional units receive a noop implicitly, avoiding wastage
of code space. In the remainder of this section, we present the class of instruction
formats designed by PICO-VLIW and the various measures it takes to address
issues relating to code size that are unique to VLIW processors.

2.1 Our generic instruction format

Figure 1 displays the generic logical structure of the instruction formats designed
by PICO-VLIW. It consists of multiple templates, with a template select �eld that
identi�es the speci�c template. Each template contains one or more operation slots,
and may contain a multi-noop �eld. Identifying a template completely determines
the number of operation slots, their syntax, and their bit positions.
For convenience, the various operations for a given machine are grouped into

operation groups (opgroups) each of which is a set of operations that are similar
in nature in terms of their latency and their connectivity to physical register �les,
and which are constrained to be mutually exclusive with respect to operation issue
(e.g. add and subtract operations on the same ALU). Each operation slot can
specify one operation from a super group, which is a set of pairwise mutually
exclusive opgroups, all of which have identical mutual exclusion relationships with
every opgroup that is not in that super group. Using this approach, the canonical
format is represented by a template where each super group consists of precisely
the opgroups supported by a functional unit in the machine.
Within each operation slot, the opgroup select �eld selects an opgroup from the

super group. The syntax of an opgroup is similar to a RISC instruction: an opcode
�eld and a sequence of source and destination operand speci�ers, collectively known
as the IO format. The IO format select �eld chooses amongst multiple IO formats

� 4

EOP

template select multi-noop

opgroup 1

opgroup 2

opgroup 3

opgroup select

super group

IO format select

opcode operand moperand 1

operation slot 1 operation slot n

packet boundary
Logical Instruction Format

Physical Instruction Format

0 1 4 29 30 3839 41 48 51 59 63

quantum
boundary

Fig. 1. Our generic instruction format syntax showing hierarchical multi-template structure (log-
ical instruction format) and physical bit allocation (physical instruction format).

allowed for an opgroup. An operand speci�er may, in general, be one of a set of
instruction �elds, called an IO set, that identify the exact kind and location of the
operand (e.g., a register speci�er or a literal). IO sets with multiple choices have a
select �eld to identify which instruction �eld is intended. Finally, the lowest level
of the syntactic hierarchy consists of various kinds of instruction �elds, including
the multi-noop �eld, select �elds, opcode �elds, and register and literal operand
speci�ers.

2.2 Custom templates

In addition to the canonical template, PICO-VLIW automatically de�nes a set of
custom templates that are customized to a given application (or a set of applica-
tions) and are narrower in width. By customizing templates to an application, we
are able to accommodate the widest instructions where necessary, while employ-
ing compact, restricted instructions for much of the code without constraining the
parallelism or the resource requirements of the application beforehand.
PICO-VLIW currently uses a very simple heuristic to select a set of custom

templates, since our initial emphasis has been merely to understand the e�ectiveness
of this strategy. (We expect ample room to improve the heuristics, subsequently.)
Given a budget K in terms of the number of custom templates to be added, our
current heuristic is to pick the K most frequent combinations of opgroups in the
scheduled program. In order to do this, PICO-VLIW generates a histogram of
combinations of opgroups for the scheduled program. This is done by mapping the
scheduled operations of an instruction back to their opgroups. A static histogram
records the frequency of static occurrence of each combination within the program,
and is useful in optimizing the static code size. A dynamic histogram, which weights
each operation group combination with its dynamic execution frequency, can be
used to improve the instruction cache performance by giving preference to the most
frequently executed sections of the code. Currently, we use the static histogram

� 5

in determining the custom templates in order to give preference to minimizing the
overall static code size. A more detailed description of this process appears in the
technical report [Aditya et al. 2000].

2.3 Trading code size for controlpath complexity

The trade-o� involved in the use of a multi-template instruction format is between
code compaction and the complexity of the controlpath, i.e., the instruction fetch
and decode pipeline, starting at the instruction cache through the control ports of
functional units, register �les, and other portions of the datapath. PICO-VLIW uses
a stylized controlpath consisting of an instruction prefetch bu�er, alignment net-
work, instruction register (IR), distribution network, and instruction decode logic.
A customized controlpath is designed automatically by PICO-VLIW to speci�cally
�t the needs of the target instruction format. Consequently, the structure and cost
of the controlpath is a function of the instruction format. With only the canon-
ical format, the instruction alignment and distribution networks are trivial if the
width of the instruction packet (the unit of access from the instruction cache)
is chosen to be the same as the width of the canonical format. Conversely with
the multi-template format, these networks may become quite complex in order to
handle the alignment of variable-width instructions and the distribution and decod-
ing of control �elds occurring at di�erent positions within the IR. A more detailed
description of the controlpath structure and the synthesis strategy is available in
our paper [Aditya et al. 1999].
An aspect of the instruction formats designed by PICO-VLIW is that the instruc-

tion �elds within each template can be positioned in some permuted, but �xed, way
that is speci�ed by the template select �eld. The �elds corresponding to an oper-
ation slot need not be positioned contiguously. Furthermore, an individual �eld is,
itself, permitted to consist of a discontiguous set of bit positions. This is possible
due to the �rm distinction PICO-VLIW places between the logical instruction
format consisting of the choice of templates and their syntactic structure, and the
physical instruction format consisting of the physical bit positions of the var-
ious instruction �elds within a template (refer Figure 1). This separation reects
the fact that PICO-VLIW designs the instruction format with hardware optimality
in mind, and not the convenience of a human machine-code programmer.
This additional degree of freedom in the physical positioning of instruction bits

can be exploited to reduce the cost and complexity of the decode and distribution
network that lies between the IR and the datapath's control ports. The permutation
applied to the �elds of each template is selected with a view towards minimizing, for
each control port, the number of distinct bit positions, across all of the templates,
at which the instruction �elds controlling that port are to be found. We refer to
this as a�nity allocation. If one were completely successful in doing this, the
distribution network would be as simple as for the canonical format. However, if
performed indiscriminately, this can also lead to template widths which are similar
to that for the canonical format. PICO-VLIW's design heuristics attempt to strike
a balance between these competing goals, reducing the amount of multiplexing in
the distribution network without causing too much increase in template widths.
The complexity of the alignment network can be partially contained by requiring

that the width of all instruction templates be a multiple of some number of bits,

� 6

which we refer to as the quantum. All shift amounts are thereby guaranteed
to be a multiple of the quantum size reducing the degree of multiplexing in the
alignment network. The adverse e�ect of quantization is that the template width
must be rounded up to an integral number of quanta. PICO-VLIW, however, takes
advantage of such unused bits in a template, whether due to quantization or other
reasons, by opportunistically collecting them to form the multi-noop �eld.

2.4 Trading code size for branch penalty

The instruction prefetch mechanism ensures that the processor will never stall, for
want of an instruction to decode, while it is executing sequentially. Furthermore,
when a branch is taken, the fact that the program schedule has been created with
the branch latency in mind, guarantees that there will be no stall cycle as long
as the branch target �ts entirely within the �rst instruction packet that is fetched
from the target location. If not, one stall cycle is experienced. This stall cycle
can be avoided by aligning a branch target, which would have straddled a packet
boundary, to start on the next packet boundary. Doing so causes the last part
of the instruction packet, which precedes the aligned branch target, to be empty.
This empty region must be treated as an extension of the instruction preceding
the empty region when the program executes sequentially through that instruction.
For this purpose, the �rst bit in every template is what is called a consume-to-

end-of-packet (EOP) bit. When this bit is set, the rest of the packet, from the
end of the current instruction to the end of the current packet, is viewed by the
controlpath logic as empty, and is skipped. The EOP bit makes it possible to avoid
branch stall penalties by aligning branch targets. However, the resulting empty
regions increase the code size.
In this section we have presented a number of measures for reducing code size

while, at the same time, containing hardware complexity and branch stall cycles.
Certain of these measures are applied by PICO-VLIW at the time that the in-
struction format is designed. These include the use of a multi-template instruction
format, the identi�cation of the minimal templates, the selection of the custom
templates, a�nity allocation, quantization, and the provision of a multi-noop �eld
and an EOP bit. The remaining measures, which are taken by the assembler, are
the selection of the best available template for each instruction, and the skillful use
of the multi-noop �eld and the EOP bit.

3. MACHINE-DESCRIPTION DRIVEN ASSEMBLY AND LINKING

An important requirement for automatically applying the techniques discussed
above is the capability to retarget the entire software tool chain, including the
compiler, assembler, disassembler, simulator, etc., to an arbitrary machine archi-
tecture within the design space. To enable this, all the tools are designed to be
mdes-driven and access architecture-dependent information indirectly through a
mdes query system (mQS) interface.
We have shown previously [Rau et al. 1999] how to design mdes-driven compilers

and the mQS interface for VLIW architectures primarily supporting the instruc-
tion scheduler and the register allocator modules. In this paper, we briey describe

� 7

the additional mechanisms needed during assembly2 to support the techniques de-
scribed above. The reader is referred to our technical report [Aditya et al. 2000]
for a more detailed account of our mdes-driven assembler and its mQS interface.

3.1 Issues in assembler design

A VLIW assembler is provided with the scheduled program consisting of a sequence
of sets of architectural operations. Each set consists of the operations scheduled
on the same cycle. The job of the assembler is to encode each set of operations
into a single instruction and consequently the entire program into a single stream of
instruction and data bits. Although the details of the instruction format are hidden
behind the mQS interface and are managed by it, many important architecture-
independent decisions, including code layout and instruction template selection
policies, are still the responsibility of the assembler. We briey discuss these below.

Code layout. Our approach of designing variable-width instruction templates and
variable-width operation slots within them implies that the width of each instruc-
tion and consequently its address o�set within a procedure can not be determined
simply by counting the number of operations. A consequence of this is that the
resolution of symbolic addresses within the program including forward branch o�-
sets and data and procedure references becomes a two-pass process. In the �rst
pass, each instruction in a procedure is assigned an address o�set by selecting an
instruction template for it and possibly aligning it to some address boundary. In
the second pass, each instruction is assembled into the template selected for it while
resolving symbolic addresses to actual addresses assigned earlier.

Template selection. Given a set of co-scheduled operations, more than one in-
struction template (canonical or custom) may be able to encode it. The assembler
selects an appropriate template based on a preferred selection policy. Our current
policy, which is geared towards reducing the overall code size, is to choose the short-
est template that may encode a given set of operations, and in case of a tie, the one
with the maximum number of allowable multi-noop cycles. If the chosen template
can not encode all the multi-noop cycles that are needed, the next instruction is
chosen to be the shortest template, which will consist entirely of noops, that can
encode all the remaining noop cycles.

Branch target alignment. The assembler is also responsible for making branch
target alignment decisions while laying out the code in memory. We use a pro�le
driven heuristic to ensure that the most frequently executed targets do not cross a
packet boundary. With this approach, the compiler needs to pro�le the program
and annotate the assembly code with the frequency with which each branch target
is visited via a taken branch. Our heuristic operates by �rst sorting branch targets
from the highest to the lowest dynamic frequency. Then, targets are classi�ed
one-by-one as not permitted to cross a packet boundary (non-crossing) by keeping
track of two cumulative values: dynamic fraction of targets already classi�ed as
non-crossing (initially 0.0) and static fraction of targets that may potentially cross

2In all our discussion, we use the term assembly to denote the combined processes of instruction
assembly and program linking.

� 8

a packet boundary (initially 1.0). At the point when the dynamic fraction of non-
crossing targets is equal to or larger than the static fraction of potentially crossing
targets, the process stops and all the remaining unprocessed targets are classi�ed
as potentially crossing a packet boundary. Finally, if a branch target instruction
that has been classi�ed as non-crossing is found to cross a packet boundary during
the address assignment phase, it is aligned to the next packet boundary and the
EOP bit is set in the preceding instruction.
This heuristic essentially tries to achieve an even balance between dynamic frac-

tion of non-crossing targets (causing increase in code size) and static fraction of
potentially crossing targets (causing branch penalty) to e�ectively trade o� branch
penalty and code size. The results presented in Section 4.6 show its e�ectiveness.

3.2 mQS data structures and mechanisms

Given an appropriate template, the assembler uses the mQS interface to assemble
the given set of co-scheduled operations into a string of bits. Likewise, the disassem-
bler uses the mQS interface to parse a given string of bits into a set of operations.
In either case, format-speci�c information, such as the hierarchical structure of the
template and various �eld encodings, is kept and manipulated within the mQS by a
template manager. Below, we describe the various internal data structures and
mechanisms used by the template manager to support the process of assembly and
disassembly.

Template selection support. The template manager needs to �nd all instruction
templates that can encode a given set of architectural operations characterized by
their opcode and IO format combinations. The number of such combinations is,
however, extremely large. Therefore, rather than enumerating all possible sets of
operations and the templates that may encode them, the template manager uses
some auxiliary data structures and a matching algorithm to �nd the valid templates.
The template manager keeps a hash table called the opcode map which maps

each architectural opcode to the set of opgroups (kept as a bitvector) in which that
opcode may appear. Di�erent opgroups in this set may implement either disjoint
or overlapping IO formats for the given opcode. An opcode may end up belonging
to multiple opgroups when a new combination of opcodes or certain IO format
combinations of existing opcodes are separated into a new opgroup for template
customization.
Another data structure kept by the template manager is the opgroup table that

lists all opgroups and the various IO formats they support. The size of this table
is proportional to the number of opgroups supported by the architecture which is
usually much smaller than the number of architectural opcodes. Each opgroup in
the opgroup table also keeps a set of templates (also kept as a bitvector) in which
it can be encoded. This set is directly derived from the instruction format design
process by identifying the opgroups that are present in a template.
Figure 2 shows the pseudo-code used by the template manager to identify all

valid templates that can encode a given instruction. The input, provided by the
assembler, is a list of opcode-IO format pairs characterizing the current instruction.
For each such pair, the �rst step is to map the given opcode to the set of opgroups
it belongs to using the opcode map. The next step is to �lter this set for matching

� 9

Procedure FindValidTemplates (List<opcode, ioformat> operationList)
Set<Template> templates = AllTemplates ;
Foreach (opcode, ioformat) in operationList do

Set<OpGroup> opgroups = OpcodeMap.value(opcode) ;
Set<Template> opTemplates = emptySet ;
Foreach opgroup in opgroups do

If (Match(opgroup.ioformat, ioformat))
then opTemplates = opTemplates [opgroup.templates ; endif

endfor

templates = templates \ opTemplates ;
endfor

return templates ;

Fig. 2. Pseudo-code to �nd the set of valid templates that may encode a given set of operations.

opgroups that can implement the desired IO format for that opcode. If more than
one opgroup matches, then each is considered to be a candidate for encoding that
opcode-IO format pair. A union of the set of templates that may encode a candidate
opgroup gives the set of all templates that may encode the given operation. Finally,
the intersection of such sets across all operations gives the set of valid templates
that may encode all the operations of the current instruction.
Any one of the templates found in the above process may be selected by the

assembler to encode the given instruction. The template manager keeps various
properties of each template in a template table to help in this process. Such
properties include the size of the template in bits, the number of multi-noops cycles
that can be encoded within it, and the number of unused bits within the template
due to encoded noops as well as a�nity allocation of �elds.

Template assembly and disassembly. The assembly and disassembly processes re-
quire complete knowledge about the bit positions of all instruction �elds and their
encodings within each template that is selected. A simple way to organize this infor-
mation across all templates is to capture the hierarchical syntax of the instruction
format (Figure 1) in a tree data structure called the IF-tree as shown in Figure 3.
The leaves of this tree are the instruction �elds, i.e. opcodes, operands, literals, and
various selector �elds, and the internal nodes represent the hierarchical syntactic
elements, i.e. instruction, templates, operation slots, opgroups, IO formats, and
IO sets. Each leaf also identi�es a set of bit positions allocated to it. The leaves
corresponding to the various selector �elds (e.g. template selector �eld, opgroup
selector �eld, opcode, etc.) also keep the exact encoding of the choices available
at that sub-tree. All this information is supplied to the mQS by the instruction
format design process.
The template manager uses the IF-tree not only to identify the instruction syntax

and bit positions of various �elds, but also to keep track of the partial state of
assembling an instruction. This can be easily accomplished by keeping a pointer
at each level of the IF-tree to identify the sub-tree under which an instruction �eld
is being assembled. This permits a hierarchical, iterative interface to be built to
direct the template manager through the various steps of assembly.
The process of assembly proceeds as follows. First, the template manager allo-

cates a bitvector wide enough to encode the template chosen by the assembler and
sets the template selector �eld bits to indicate that choice. Next, the assembler
directs the template manager to encode each operation belonging to the current

� 10

Template 0 Template 1

mult
add/sub

Instruction

Select

Select

Instruction Templates

Datapath Control Ports

CEP #noop

gpr, lit, gpr :

opcode

RFread RFreadLITread

Operation Slots

IO Sets

IF Control Ports

Instruction

Operation Groups

IO Formats

ld.disp
st.disp

Select

madd ld.inc

Mem-op a 5 d1 a4 int-op a1 a2 a3

gpr, gpr, gpr : gpr

opcode

RFread RFreadRFread RFwrite

OR node

AND node

Fig. 3. The structure of the IF-tree.

instruction one-by-one. For each operation, the assembler presents its opcode to
the template manager followed by its operands in the order speci�ed by the IO
format of the operation. The template manager �rst converts the given opcode to
its opgroup using the opcode map and identi�es its sub-tree node in the IF-tree.
This enables it to identify the operation slot occupied by this operation and set the
opgroup, opcode and the IO format selector �eld bits. The various operands are
assembled by consulting the corresponding leaves below the opgroup sub-tree for
their bit positions and encodings. Finally, the EOP bit and the multi-noop cycles
are �lled in as needed and the �nished string of bits representing the complete
instruction is returned to the assembler.
The process of disassembly proceeds in the reverse manner of assembly. First,

the disassembler supplies a string of instruction bits to the template manager whose
length is equal to the maximum size instruction. The instruction to be disassembled
is positioned left-just�ed in this string. The template manager decodes the template
select �eld and the EOP bit to identify the template and its size. The disassembler
uses this information to determine the start of the next instruction. Next, the
template manager returns a list of the opcodes and IO formats of the various
operations encoded within the current instruction. This information is determined
by identifying the bit positions of the various selector �elds within the current
template and decoding their value using the IF-tree. The disassembler then uses
this list to disassemble each operation one-by-one by supplying the opcode to the
template manager and then querying its operands in the order speci�ed by the IO
format. Each such query returns the actual register number or literal value for the
corresponding operand. The template manager disregards any extra bits in the
supplied string that are not decoded as part of the current instruction.

3.3 The mQS interface

The set of mQS interface functions related to the process of assembly and disas-
sembly can be classi�ed into the following categories:

� 11

Template selection functions

set operation tuple Provide a set of opcode-IO format pairs for template selection.
get next template Obtain the next valid template for the current inst.
set template Select the given template for encoding the current inst.
get size Obtain the size of the given template in bits.
get unused bits Obtain the number of unused bits in the current template (noops etc.).
get max multi noops Obtain the number of multi-noop cycles allowed in the given template.
Template assembly functions

assemble op Initiate the assembly of an operation with the given opcode.
assemble pred Assemble a predicate register operand.
assemble pred lit Assemble a predicate literal (true, false) operand.
assemble src Assemble a register operand.
assemble src lit Assemble an immediate literal operand.
assemble dest Assemble a destination register operand.
assemble multi noop Set the number of multi-noop cycles to the given value.
assemble EOP Set the EOP bit to the given value.
get instruction Obtain the fully assembled vector of bits for the current inst.
Template disassembly functions

set instruction Provide a string of bits for disassembly.
get operation tuple Obtain the set of opcode-IO format pairs present in the current inst.
disassemble op Initiate disassembly of an operation with the given opcode.
disassemble pred Disassemble a predicate register operand.
disassemble pred lit Disassemble a predicate literal operand.
disassemble src Disassemble a register operand.
disassemble src lit Disassemble an immediate literal operand.
disassemble dest Disassemble a destination register operand.
disassemble multi noop Obtain the number of multi-noop cycles set in the current inst.
disassemble EOP Obtain the value of the EOP bit.
Miscellaneous functions

get packet size Obtain the instruction packet size in bits.
get quantum size Obtain the quantum size in bits.
get max inst size Obtain the size of the maximum sized instruction in bits.

Table I. The mQS interface functions.

(1) Template selection - These functions enable the selection of the most appro-
priate instruction format template for a given set of architectural operations
scheduled in the same cycle.

(2) Template assembly - These functions help to assemble a single VLIW in-
struction by �lling the operation information provided by the assembler into
the template and then returning the bit encoding of the fully assembled in-
struction.

(3) Template disassembly - These functions help to disassemble an instruction
byte stream, identifying the set of operations scheduled within one instruction.

(4) Miscellaneous instruction format information - These functions provide
general information regarding the instruction format of the machine.

The functions provided in each of these categories are summarized in Table I. A
more detailed description of each function including its input and output signature
is provided in the technical report [Aditya et al. 2000].

4. EXPERIMENTAL RESULTS

Our instruction format synthesis system provides four central features to reduce
code size while limiting control hardware complexity and run-time branch stall

� 12

cycles. These features consist of a multi-noop �eld, custom templates, a�nity allo-
cation, and a consume-to-end-of-packet (EOP) bit. In this section, the e�ectiveness
of these features is evaluated for a range of VLIW processors.

4.1 The experimental setup

The central focus of PICO-VLIW is designing custom processors for applications
in the embedded domain. A subset of the MediaBench 1.0 applications are se-
lected consistent with this focus [Lee et al. 1997]. The applications are: epic and
unepic (image compression), pgpencode and pgpdecode (encryption), ghostscript
(postscript interpretation), mipmap (3D graphics), and rasta (speech recognition).
The experiments utilize a class of VLIW processors de�ned by four parameters

(IFMB): \I" denoting the number of integer units, \F" denoting the number of
oating-point units, \M" denoting the number of memory ports, and \B" denoting
the number of branch units. We consider �ve processors in this class de�ned by
their IFMB tuple, 1111, 2111, 3121, 4121, 6132, which can issue up to 4, 5, 7, 8,
and 12 operations per cycle, respectively. We chose to �x the number of oating-
point units at one because our benchmark set contains very little oating-point
computation and does not bene�t from additional oating-point resources. All
processors utilize the HPL-PD instruction set [Kathail et al. 2000]. A constant
register �le con�guration is assumed across all the processors, consisting of 64
general-purpose registers, 16 oating-point registers, 32 predicate registers, and 32
branch-target registers. In addition, we assume immediate short literals are 6-bits
and long literals are 32-bits. The quantum size is chosen to be 16 bits for all VLIW
processors.
One additional processor, customized to each application, is de�ned to serve

as the reference machine with respect to code size. Since we want the reference
machine to have the minimum possible code size, our reference machine is a hypo-
thetical CISC processor, referred to as the pseudo-CISC processor. It issues exactly
one operation of any type per instruction and, since it is assumed to have hardware
interlocks, requires no noop instructions. It utilizes variable-length encoding for
instructions with as many custom templates as needed by the application, employs
no a�nity allocation, and has a quantum size of 8 bits to achieve as small a code
size as possible. The pseudo-CISC's code size approximates the best code size that
we can achieve using all the features of our instruction-format for a sequential,
single-issue processor. Hence, it also estimates the best code size achievable given
the HPL-PD architecture. Although an actual RISC or CISC processor might seem
to be a better reference than this hypothetical one, the architectural di�erences be-
tween the operation repertoire of an actual processor and HPL-PD are so great that
they would invalidate any attempt to measure the e�ectiveness of the techniques
described in this paper. In the interests of performing a controlled and meaningful
set of experiments, we have factored out this architectural variable by de�ning a
pseudo-CISC processor that uses the HPL-PD operation repertoire.
The parameters listed in Table II are varied for di�erent experiments. Operation

latencies for the 1x case are as follows: simple integer - 1 cycle, simple oating
point - 3 cycles, memory load - 2 cycles, memory store - 1 cycle, integer and oating
point multiply - 3 cycles, integer and oating point divide - 8 cycles, and branch
- 1 cycle. When the operation latencies are varied, the 1x latencies are uniformly

� 13

Experimental parameter Range of variation

Processor issue width 1111, 2111, 3121, 4121, 6132
Operation latencies 1x, 2x, 3x
Use of the multi-noop capability no, yes
Number of custom templates 0, 3, 7, 15, 31, 63, max
A�nity allocation none, full
Use of the EOP bit always, never, heuristic

Table II. Experimental parameters and their range of variation.

scaled by two or three to examine the e�ects of deep pipelines on the instruction
format. When the number of custom templates is set to 0, we are left with only the
canonical template. PICO has the ability to apply a�nity allocation either to all
or to just a subset of instruction �elds. Here we only study the e�ect of applying
a�nity allocation to all instruction �elds, i.e., full a�nity.
Each experiment reports on one or more of the following data: code size, con-

trolpath cost, or dynamic branch stall cycles. Code size is the total size in bytes of
the text portion of each application excluding shared libraries after assembly and
linking are complete. Controlpath cost is the estimated area for the controlpath
for the given instruction format (Section 2.3). Dynamic branch stall cycles is an
estimate of the number of stall cycles obtained by counting the unaligned branch
targets (Section 2.4) weighted by the frequency of visiting that branch target via a
taken branch, as derived from pro�ling the application on a sample input set.

4.2 Comparison of the canonical and pseudo-CISC formats

As a starting point for the evaluation, the canonical code size for all of our processor
con�gurations is compared against that of the pseudo-CISC processor in Table III.
The canonical code size refers to the code size that results without the use of any
of the four features of our instruction format. From the table, we see that code size
uniformly increases with both width and latency. In general, all of the code size
ratios are strikingly large with the largest ratio of 28.8 for mipmap and pgpdecode
on the 6132 processor and latency 3x. Even for the 1111 (4-issue), the code size
increases are quite large, ranging from 3.6 to 4.8 for latency 1x and 4.5 to 8.9 for
latency 3x. Such large increases in code size are unacceptable for embedded sys-
tems where instruction memory is at a premium. These results clearly illustrate
the traditional criticism of VLIW processors wherein the instruction encoding be-
comes increasingly less e�cient as more parallelism is introduced into the processor.
Because the application is not uniformly parallel, more instruction space must be
wasted to encode noop operations when the full processor parallelism cannot be
utilized. For the rest of this evaluation, we address the e�ectiveness of the features
of our instruction format at reducing the e�ect of width and latency on code size
for VLIW processors.

4.3 E�ectiveness of the multi-noop �eld

Figure 4 presents the e�ect of processor latency on code size, with and without the
multi-noop �eld, for all three sets of latencies. It is clear from the �gure that code
size dramatically increases with higher latency in the absence of the multi-noop
�eld. This increase is primarily due to cycles in which no operations are scheduled.
Without a multi-noop �eld, each such noop instruction requires an explicit template

� 14

Application Latency Processor Width

1111 2111 3121 4121 6132

epic 1x 4.17 3.95 4.98 6.24 8.76
2x 5.19 5.98 7.97 10.08 14.60
3x 6.53 8.14 11.25 13.98 20.44

ghostscript 1x 4.09 4.79 6.05 7.67 10.40
2x 5.56 7.39 9.72 12.43 17.00
3x 7.14 10.07 13.66 17.04 23.61

mipmap 1x 4.44 5.61 7.28 9.28 12.60
2x 6.51 8.86 11.78 15.17 20.77
3x 8.51 12.19 16.71 20.85 28.84

pgpdecode 1x 4.84 5.81 7.62 9.72 13.29
2x 6.90 9.16 12.10 15.45 21.19
3x 8.87 12.34 16.71 20.82 28.81

pgpencode 1x 4.83 5.76 7.54 9.61 13.13
2x 6.86 9.06 11.95 15.24 20.89
3x 8.80 12.19 16.48 20.53 28.36

rasta 1x 3.87 4.21 5.25 6.39 8.73
2x 5.16 6.46 8.41 10.43 14.49
3x 6.58 8.75 11.75 14.51 20.28

unepic 1x 3.64 3.28 3.68 4.30 5.66
2x 4.05 4.26 5.45 6.64 9.16
3x 4.54 5.54 7.38 8.97 12.65

Table III. Code size with the canonical instruction format as a function of processor width and
functional unit latency. Each cell of the table contains the ratio of the code size achieved for a
width-latency pair versus the code size for the pseudo-CISC processor for each application.

0

5

10

15

20

25

30

epic ghostscript mipmap pgpdecode pgpencode rasta unepic

R
el

at
iv

e
C

od
e

Si
ze

1x, no

2x, no

3x, no

1x, yes

2x, yes

3x, yes

Latency,
multi-noop

Fig. 4. E�ect of the multi-noop capability upon the code size as a function of operation latency.
The following parameters are �xed for the experiment: 6132 processor, no custom templates, no
a�nity, and no use of the EOP bit. Code sizes are normalized with respect to the code size
obtained on the pseudo-CISC processor. The upper portion of each bar shows the relative code
size without the multi-noop feature, whereas the lower portion of each bar displays the relative
code size with the multi-noop feature.

to specify it. This problem is exacerbated since we have used no custom templates in
this experiment, so the only mechanism for encoding a full cycle of noop operations
is with the full width template.
With the multi-noop �eld, the code size is uniformly reduced across all appli-

cations and latencies (even 1x) cutting down on explicit noop instructions. Also,
the sensitivity of code size to latency is almost eliminated. For example with epic,
the code size increase with multi-noop is reduced to 10% and 12% (as compared

� 15

to 67% and 133% without multi-noop), respectively, for 2x and 3x latencies. The
multi-noop �eld provides a virtually free mechanism to encode full cycles of noop
operations using spare bits in the templates. Hence, all of these cycles of noop
operations can be compressed out of the instruction encoding thereby minimizing
the impact of latency on code size.The rest of the experiments all assume the use
of the multi-noop capability.

4.4 Code size and hardware complexity with custom templates

Figure 5a shows the e�ect of adding custom templates on code size for the applica-
tion pgpdecode (which is representative of all applications considered). The chart
shows a couple of trends. A �rst observation is that for a given number of custom
templates, the code size grows as the machines become wider because the width of
the canonical template increases. More interestingly, the code size decreases quite
dramatically (by almost a factor of 9 for the 6132 machine con�guration) as the
number of custom templates is increased. This trend is visible across all machine
con�gurations. This is the most obvious bene�t of template customization { the
fact that additional custom templates provide a narrower way of encoding addi-
tional combinations of co-scheduled operations which would otherwise be encoded
using the default canonical template (represented by C0).
Second, since we customize the most frequent operation combinations �rst, the

incremental bene�t of customization on the code size diminishes as more templates
are added. However, what is more signi�cant is that the variation in code size across
machine con�gurations is also reduced quite signi�cantly. Indeed, with the maxi-
mal number of custom templates (Cmax) the variation in code size across machines
is negligible. This is because as the fraction of code covered by custom templates
increases, the remaining fraction that uses the canonical template decreases thereby
reducing the sensitivity of code size to machine width. This implies that adding
custom templates is an e�ective way to eliminate the increase in code size as the
machines are scaled in width. A �nal observation is that with Cmax custom tem-
plates (and using the multi-noop �eld) the code size for all processors has been
reduced to approximately that of the pseudo-CISC processor; all of the code size
penalty traditionally associated with a wide-issue VLIW has been removed.
Adding custom templates, however, comes at some hardware cost. Figure 5b

shows the incremental cost of controlpath hardware due to an increase in the number
of custom templates. The most important trend is that the controlpath hardware
cost increases as more custom templates are added, but not by a large amount.
For the 1111 machine con�guration the increase from 0 to 63 custom templates is
less than 10%, and for the 6132 machine con�guration it is less than 20%. This
means that most of the advantages in code size shown above that were obtained by
template customization come at a fairly modest cost in control hardware.
There are two major contributors to this increase in the hardware cost: the

instruction fetch pipeline hardware and the instruction decode logic. The instruc-
tion fetch pipeline hardware includes the instruction alignment network before the
instruction register and the instruction distribution network after the instruction
register. The graph shows a jump in the control hardware cost when the number
of custom templates is raised from 0 to 3. This is due to a signi�cant increase in
the cost of the instruction alignment network which is needed to prepare the in-

� 16

0

2

4

6

8

10

12

14

C0 C3 C7 C15 C31 C63 Cmax

Number of Custom Templates

R
el

at
iv

e
C

od
e

Si
ze

1111 2111 3121 4121 6132

-10%

0%

10%

20%

30%

40%

50%

60%

C0 C3 C7 C15 C31 C63 Cmax

Number of Custom Templates

In
cr

em
en

ta
l C

on
tr

ol
pa

th
 C

os
t

1111 2111 3121 4121 6132

(a): Code Size (no a�nity) (b): Controlpath Cost (no a�nity)

0

2

4

6

8

10

12

14

C0 C3 C7 C15 C31 C63 Cmax

Number of Custom Templates

R
el

at
iv

e
C

od
e

Si
ze

1111 2111 3221 4221 6332

-10%

0%

10%

20%

30%

40%

50%

60%

C0 C3 C7 C15 C31 C63 Cmax
Number of Custom Templates

In
cr

em
en

ta
l C

on
tr

ol
pa

th
 C

os
t

1111 2111 3121 4121 6132

(c): Code Size (full a�nity) (d): Controlpath Cost (full a�nity)

Fig. 5. E�ect of varying the number of custom templates for pgpdecode, (a) relative code size
across various machines with no a�nity, (b) incremental controlpath cost across machines with no
a�nity, (c) relative code size across various machines with full a�nity, (d) incremental controlpath
cost across machines with full a�nity. The following parameters are �xed for this experiment: 1x
latencies, use of multi-noop, and no use of the EOP bit. The number of custom templates varies
from none (C0) through 63 (C63) to the maximum number needed for that machine con�guration
(Cmax) upper bounded at 511 templates. The code size has been normalized to the corresponding
pseudo-CISC machine. Incremental controlpath cost is expressed as a percentage of total hardware
cost for the corresponding C0 machine. These numbers are based on an estimated area cost model
for a 0.18u process technology.

struction register for the next instruction by shifting the instruction register by the
width of the current instruction (which now becomes a variable) and left-aligning
the next instruction. We have reduced the complexity of this shift and align net-
work by quantizing all templates to a multiple of a �xed quantum width (16 bits
in all our experiments). Once the hardware investment is made to accommodate
multiple width templates, the cost of adding more custom templates is only due
to the added complexity of the instruction distribution network and the decode
logic which is not very signi�cant from 3 to 63 templates. Only in the extreme
case of adding as many custom templates as needed (Cmax) does this cost become
signi�cant.

4.5 Code size and hardware complexity with full a�nity

The cost of the instruction distribution network and decode logic becomes signif-
icant with large numbers of custom templates because packing the bits as tightly
as possible for each additional custom template may cause the instruction �elds,

� 17

controlling the same datapath control port (such as a register �le address port),
to be allocated at di�erent bit positions. This introduces multiplexors into the in-
struction distribution path as well as requires additional control logic. Even though
packing the templates is desirable for obtaining smaller sized templates, the hard-
ware complexity increases controlpath cost and adds delay due to multiplexors in
the critical path. Therefore, we use full a�nity to ensure that all instruction �elds
in di�erent templates which control the same control port are allocated to the same
bit positions. This eliminates the need for any multiplexors in instruction distri-
bution. However, it has the potential to increase the template size because �elds
across templates have to be aligned with each other.
Corresponding to Figures 5a and 5b, Figures 5c and 5d show the e�ects of cus-

tom templates on code size and incremental control path cost with full a�nity.
Qualitatively, Figure 5c is similar to Figure 5a, but an increase in code size may
be observed due to full a�nity: up to 12% for C0 and up to 50% for Cmax. Com-
paring Figure 5d with Figure 5b, the important observation is that the controlpath
hardware cost is generally lower with full a�nity, more signi�cantly so for higher
numbers of custom templates. Indeed, the cost increment for the maximum number
of custom templates (Cmax) is now only between 5% to 20% across the machines
as opposed to being between 8% to 59% for the case when there was no a�nity.
This improvement is largely due to the almost complete elimination of the complex
instruction distribution network made possible by full a�nity. Note that full a�n-
ity even reduces the cost of no custom templates (C0) slightly due to the a�nity
across opgroups within each super group.
In short, full a�nity successfully reduces instruction distribution complexity to

improve critical path timing (and some controlpath hardware cost) without signi�-
cantly impacting the code size. Therefore, in the remaining experiments we assume
the use of full a�nity with maximum number of custom templates (upper bounded
at 511).

4.6 The use of the EOP bit

Figure 6 shows the e�ectiveness of our frequency heuristic for aligning branch tar-
gets using the EOP bit for all of the applications. The heuristic is compared against
the two extreme strategies: never aligning and always aligning. The �rst extreme
strategy, never align, never sets the EOP bit to align a branch target. This strategy
achieves the smallest code size by ignoring alignment issues and packing instructions
as tightly as possible. However, it su�ers the maximum branch penalty since branch
targets often do span multiple packets. The other extreme strategy, always align,
ensures that no branch target crosses a packet boundary by aggressively setting
the EOP bit whenever a crossing would have occurred. This strategy reduces the
branch penalty to zero, but su�ers the largest code size due to excessive alignment.
The ideal situation is to have no branch penalty with no increase in code size.

Our heuristic attempts to get the best of both worlds by using alignment for a small
number of important branch targets to reduce the majority of the branch penalty
and no alignment for all other targets to keep the code size small. As Figure 6
demonstrates, our heuristic is very e�ective. The normalized branch penalty is
never greater than 5%, while the normalized code size increase is not more than
15% (8% without rasta). Mipmap has almost ideal behavior with this heuristic.

� 18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized Code Size Increase

N
or

m
al

iz
ed

 B
ra

nc
h

Pe
na

lty epic
ghostscript
mipmap
pgpdecode
pgpencode
rasta
unepic

Never align

Always align

Heuristically align

Fig. 6. E�ectiveness of the EOP heuristic policy in reducing the branch stall penalty without
increasing the code size excessively. For this experiment, the following variables are �xed: the
6132 processor with 1x latencies, the use of the multi-noop capability, maximum number of custom
templates, and full a�nity. Each data point shows the normalized code size increase and the
normalized branch penalty achieved with each alignment strategy for a particular application.
The code size increase is de�ned to be the incremental change in code size above the never align
case. The normalized code size increase is de�ned as the ratio of the code size increase to the code
size increase for the always align case. The normalized branch penalty is de�ned to be the ratio
of the branch penalty to what it would be in the never align case.

4.7 The combined e�ectiveness of all the techniques on code size

Table IV shows the cumulative e�ect of using all the features of our instruction
format on code size for all processor con�gurations. This corresponds to what we
view as a judicious balance between code size, controlpath complexity and branch
penalties. The table presents a dramatically di�erent picture of code size as a
function of processor width and latency than was measured for the canonical case
(Table III). The code size for the 1111 (4-issue) processor is now between 1.5x
and 2.3x of the code size of the pseudo-CISC processor. This is about the same
factor by which RISC code exceeds CISC code. Furthermore, for the 6132 (12-issue)
processor, the code size ratio is also similar, ranging from 1.6x to 2.3x as compared
to 5.7x to 28.8x in the canonical case. This data shows that the combination of
custom templates and the multi-noop �eld are highly e�ective even when full a�nity
and the EOP heuristic are employed (both of which tend to increase the code size
to help other objectives). Together, they eliminate most of the ine�ciencies in the
instruction encoding for processors with higher degrees of parallelism, and thus not
incur the code bloat traditionally associated with VLIW processors.
A couple of non-intuitive behaviors are illustrated in the table. First, the code size

for 1111 processor is often larger than that for wider processors. This is because
1111 processor has less ILP than others leading to fewer opportunities for using
custom templates. Wider machines are also able to pack more operations into one
instruction and hence incur less packet alignment overhead. Second, the code size
for latency 2x or 3x is sometimes smaller than that for latency 1x especially for very
wide (6132) processors. This behavior is somewhat subtle and is due to the nature

� 19

Application Latency Processor Width

1111 2111 3121 4121 6132

epic 1x 2.13 1.63 1.73 1.74 1.90
2x 2.22 1.77 1.86 1.87 1.91
3x 2.25 1.85 1.91 1.83 1.88

ghostscript 1x 2.01 1.79 1.89 2.02 2.28
2x 2.17 2.06 1.94 2.09 2.28
3x 2.24 2.16 2.00 2.04 2.29

mipmap 1x 1.98 1.73 1.96 1.90 2.11
2x 2.17 1.99 2.00 2.01 2.09
3x 2.24 1.99 2.05 2.09 2.08

pgpdecode 1x 1.46 1.48 1.58 1.62 1.83
2x 1.67 1.60 1.65 1.64 1.78
3x 1.70 1.64 1.66 1.65 1.78

pgpencode 1x 1.46 1.47 1.57 1.64 1.82
2x 1.67 1.59 1.64 1.64 1.77
3x 1.70 1.63 1.65 1.64 1.77

rasta 1x 1.96 1.55 1.71 1.71 1.90
2x 2.09 1.68 1.75 1.73 1.90
3x 2.15 1.74 1.83 1.83 1.91

unepic 1x 2.19 1.57 1.52 1.54 1.64
2x 2.23 1.69 1.70 1.64 1.71
3x 2.25 1.75 1.73 1.65 1.69

Table IV. Code size using the multi-noop �eld, maximum number of custom templates with full
a�nity and the EOP bit as a function of processor width and functional unit latency. Each cell
of the table contains the ratio of the code size achieved for a processor-latency pair to that of the
pseudo-CISC processor for each application.

of the resultant schedules for processors with short and long latencies. Generally,
with short latencies there is a more uniform distribution of parallelism within a
scheduling region. As the latencies are increased, the code becomes more bimodal
with bursts of parallel operations followed by sequential operations. Since we upper
bound the number of custom templates at 511, the �xed number of templates are
more e�ective at capturing the scheduling patterns in bimodal pattern of operations
than with the uniform distribution of operations.

5. RELATED WORK

In the context of VLIW processors, techniques for minimizing code size fall broadly
into two categories: decompress-on-miss and decompress-on-hit. In the �rst cat-
egory, instructions are represented in compressed form in memory, but in decom-
pressed form in the instruction cache. Decompression is performed at the time of
an instruction cache miss, while instructions are being transferred from memory
into the instruction cache. This is the approach used in the Multiow architec-
ture [Colwell et al. 1988]. The drawback of this scheme is that the instruction
cache capacity is wasted. On the other hand, since the decompression penalty is
experienced only on a cache miss, relatively complex compression methods can be
employed. However, all prior work of this type has been restricted to the simpler
case of sequential processors [Wolfe and Chanin 1992; Kozuch and Wolfe 1994; Liao
et al. 1998].
The alternative is decompress-on-hit; instructions, both in memory and the in-

struction cache, are kept in their compressed form and are expanded each time
they are fetched from cache [Beck et al. 1993; Conte et al. 1996; Intel Corporation

� 20

1999; Aditya et al. 2000; Hanono and Devadas 1998]. In our opinion, if the depth
of the instruction pipeline is not to get too deep, the compression schemes must
have limited complexity, such as the custom templates described in this paper. The
Aviv retargetable code generator [Hanono and Devadas 1998] also uses a �xed set
of variable-width templates to minimize code size but the templates are speci�ed
beforehand and do not use program scheduling statistics. In contrast, the Tin-
ker project [Conte et al. 1996] uses a compression scheme which is similar to the
Multiow approach [Colwell et al. 1988], except that the decompression occurs on
every instruction fetch from the cache. In e�ect, this makes available every possible
custom template but it also has the corresponding controlpath complexity. Our ap-
proach is to limit controlpath complexity by limiting ourselves to a small, carefully
selected subset of all possible templates.
There are other techniques, orthogonal and complementary to those discussed

in this paper, which contribute to a reduction in code size. One such technique is
to recognize sequences of operations that show up repeatedly in the application of
interest, and to replace them with a new, complex opcode [Van Praet et al. 1994;
Philips Semiconductors 1997; Arnold and Corporaal 1999]. Another well-known
technique from the microprogramming literature is the use of residual control to
make certain operands or opcode quali�ers implicit.

6. CONCLUSIONS

With the canonical instruction format, the code size for VLIW and EPIC proces-
sors is extremely sensitive to both processor width and operation latency. In this
paper, we presented two techniques to address this issue. Custom templates reduce
code size for a given width, while the multi-noop capability reduces code size by
an amount proportional to the latency. Together, they make code size relatively
insensitive to both width and latency.
We also presented two other techniques{a�nity allocation and the pro�le-based

use of the EOP bit{that tradeo� some of the reduction in code size for, instead,
reducing the controlpath complexity due to custom templates and the run-time
stall penalty for fetching branch target instructions, respectively. A�nity alloca-
tion, while signi�cantly reducing the controlpath cost for large number of custom
templates (e.g., 59% to 20% for 6132 processor at Cmax templates), also provides
better hardware timing properties due to reduced multiplexing in the instruction
distribution network. Likewise, our pro�le-based heuristic controlling the use of the
EOP bit reduced the branch stall penalty to no more than 5% of what it would
have been, without increasing the code size by more than 15% (8% without rasta).
In concert, the design-time and assembly-time techniques described in this paper

allow the design of extremely wide-issue and deeply pipelined VLIW and EPIC
processors whose code size, controlpath complexity, and run-time branch penalty
are entirely acceptable. Across all seven applications considered, with up to 511
custom templates, full a�nity allocation, and the use of the EOP heuristic, the
code size relative to an abstract CISC processor is between 1.5x and 2.3x for the
1111-issue VLIW processor and between 1.6x and 2.3x for the 6132-issue processor
even with 3x latencies. This increase is comparable to that for a RISC processor.
A second focus of this paper was to describe the structure of a machine-description

driven assembler for EPIC and VLIW processors that implements some of the code

� 21

minimization techniques described above. The assembler uses a �nite and well-
de�ned set of external database queries to access all of the necessary information
regarding the target processor including its instruction format. Consequently, such
an assembler needs to concern itself only with the policies and heuristics for gener-
ating compact code.

ACKNOWLEDGMENTS

The authors would like to acknowledge Richard Johnson's contributions to PICO-
VLIW's instruction format design capability upon which this work is based.

References

Aditya, S., Rau, B. R., and Johnson, R. C. 2000. Automatic design of VLIW and EPIC
instruction formats. HPL Technical Report HPL-1999-94, Hewlett-Packard Laboratories.

Aditya, S., Rau, B. R., and Kathail, V. 1999. Automatic architectural synthesis of
VLIW and EPIC processors. In International Symposium on System Synthesis, ISSS'99
(San Jose, California, 1999). IEEE Computer Society, 107{113.

Arnold, M. and Corporaal, H. 1999. Instruction set synthesis using operation pattern
detection. In Fifth Annual Conf. of ASCI (Heijen, The Netherlands, 1999).

Beck, G. R., Yen, D. W. L., and Anderson, T. L. 1993. The cydra 5 mini-supercomputer:
architecture and implementation. The Journal of Supercomputing 7, 1/2, 143{180.

Colwell, R. P., Nix, R. P., O'Donnell, J. J., Papworth, D. B., and Rodman, P. K. 1988.
A vliw architecture for a trace scheduling compiler. IEEE Transactions on Computers 37,
8, 967{979.

Conte, T. M., Banerjia, S., Larin, S. Y., Menezes, K. N., and Sathaye, S. W. 1996.
Instruction fetch mechanisms for VLIW architectures with compressed encodings. In 29th
International Symposium on Microarchitecture (1996). 201{211.

Hanono, S. and Devadas, S. 1998. Instruction Selection, Resource Allocation, and
Scheduling in the Aviv Retargetable Code Generator. In 35th Design Automation Con-
ference (1998). 510{515.

Intel Corporation. 1999. IA-64 Application Developer's Architecture Guide.

Kathail, V., Schlansker, M., and Rau, B. R. 2000. HPL-PD architecture speci�cation:
Version 1.1. Technical Report HPL-93-80 (R.1), Hewlett-Packard Laboratories.

Kozuch, M. and Wolfe, A. 1994. Compression of embedded system programs. In IEEE
International Conference on Computer Design (1994). 270{277.

Lee, C., Potkonjak, M., and Mangione-Smith, W. H. 1997. Mediabench: A tool for
evaluating and synthesizing multimedia and communication systems. In 30th Annual Inter-
national Symposium on Microarchitecture (MICRO-30) (1997). ACM and IEEE Computer
Society.

Liao, S. Y., Devadas, S., and Keutzer, K. 1998. Code density optimization for embedded
DSP processors using data compression techniques. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 17, 7, 601{608.

Philips Semiconductors. 1997. Trimedia TM-1 Media Processor Data Book.

Rau, B. R. 1988. Cydra 5 directed dataow architecture. In COMPCON '88 (San Fran-
cisco, 1988). 106{113.

Rau, B. R., Kathail, V., and Aditya, S. 1999. Machine-description driven compilers for
EPIC and VLIW processors. Design Automation for Embedded Systems 4, 2/3, 71{118.

Schlansker, M. S. and Rau, B. R. 2000. EPIC: Explicitly parallel instruction computing.
Computer 33, 2, 37{45.

Van Praet, J., Goossens, G., Lanneer, D., and De Man, H. 1994. Instruction set
de�nition and instruction selection for ASIPs. In 7th ACM/IEEE International Symposium
on High-Level Synthesis (Niagara-on-the-Lake, Ontario, Canada, 1994). IEEE, 11{16.

Wolfe, A. and Chanin, A. 1992. Executing compressed programs on an embedded risc
architecture. In The 25th Annual International Symposium on Microarchitecture (MICRO-
25) (1992). IEEE.

